How do you evaluate e^( ( 7 pi)/4 i) - e^( ( 5 pi)/6 i)e7π4ie5π6i using trigonometric functions?

1 Answer
Jan 17, 2016

=- 2sin15(cos15+isin15)

Explanation:

= cos ((7pi)/4) +i sin ((7pi)/4) - cos( (5pi)/6) - i sin ((7pi)/6)cos(7π4)+isin(7π4)cos(5π6)isin(7π6)

= cos ((7pi)/4) -cos ((5pi)/6) +i [ sin((7pi)/4) - sin((5pi)/6)]cos(7π4)cos(5π6)+i[sin(7π4)sin(5π6)]

= -2 sin((31pi)/12) sin ((11pi)/12) +2i sin((11pi)/12) cos ((31pi)/12)2sin(31π12)sin(11π12)+2isin(11π12)cos(31π12)

=2sin ((11pi)/12)[ -sin((31pi)/12) +i cos((31pi)/12)]2sin(11π12)[sin(31π12)+icos(31π12)]

=2sin ((11pi)/12)[ -sin((7pi)/12) +i cos((7pi)/12)]2sin(11π12)[sin(7π12)+icos(7π12)]

=2 sin (pi/12)[ -sin105+ i cos 105]

= 2 sin 15(-cos 15 - i sin 15)

=- 2sin15(cos15+isin15)