How do you evaluate e^( ( 7 pi)/4 i) - e^( ( 8 pi)/3 i) using trigonometric functions?

1 Answer
May 3, 2016

0.881-1.692i

Explanation:

According to Euler's formula,

e^(ix)=cosx+isinx

If we substitute in values for x from the question, we get

e^((7pi)/4i)=cos((7pi)/4)+isin((7pi)/4)
=cos315+isin315
=0.707-0.707i

e^((8pi)/3i)=cos((8pi)/3)+isin((8pi)/3)
=cos100+isin100
=-0.174+0.985i

Now you have the two parts of the question, you put them together and solve arithmetically:

e^((7pi)/4i)-e^((8pi)/3i)
=(0.707-0.707i)-(-0.174+0.985i)
=0.707+0.174-0.707i-0.985i

=0.881-1.692i