How do you evaluate e^( ( 7 pi)/4 i) - e^( ( pi)/2 i)e7π4ieπ2i using trigonometric functions?

1 Answer
Jan 22, 2017

e^((7pi)/4i)-e^(pi/2i)=-1/sqrt(2)+(sqrt(2)+1)/sqrt(2)ie7π4ieπ2i=12+2+12i

Explanation:

Euler's formula states

e^(ix)=cos(x)+isin(x)eix=cos(x)+isin(x)

Then for x=pi/2x=π2

e^(ix)=e^(x i)=e^(pi/2i)=cos(pi/2)+isin(pi/2)=0+i(1)=ieix=exi=eπ2i=cos(π2)+isin(π2)=0+i(1)=i

and for x=(7pi)/4=(2pi-pi/4) => -pi/4x=7π4=(2ππ4)π4

e^(-pi/4i)=cos(-pi/4)+isin(-pi/4)=cos(pi/4)-isin(pi/4)=1/sqrt(2)-1/sqrt(2)ieπ4i=cos(π4)+isin(π4)=cos(π4)isin(π4)=1212i

Then plug in

e^((7pi)/4i)-e^(pi/2i)=i-(1/sqrt(2)-1/sqrt(2)i)=i-1/sqrt(2)+1/sqrt(2)ie7π4ieπ2i=i(1212i)=i12+12i

=-1/sqrt(2)+(sqrt(2)+1)/sqrt(2)i=12+2+12i