How do you evaluate e7π4ieπ6i using trigonometric functions?

1 Answer
Jan 31, 2016

ei7π4eiπ6=232i(1+22)

Explanation:

Use the Euler's Formula, which states that eiθcos(θ)+isin(θ). (Proof omitted)

Therefore,

ei7π4eiπ6=(cos(7π4)+isin(7π4))(cos(π6)+isin(π6))

=(22+i(22))(32+i(12))

=232i(1+22)