How do you evaluate e^( ( 7 pi)/6 i) - e^( ( 17 pi)/8 i) using trigonometric functions?

1 Answer
Jul 22, 2017

The answer is =-sqrt3/2-sqrt(2+sqrt2)/2-i(1/2+sqrt(2-sqrt2)/2)

Explanation:

We need

cos2theta=2cos^2theta-1, =>, costheta=sqrt((1+cos2theta)/2)

cos2theta=1-2sin^2theta, =>, sintheta=sqrt((1-cos2theta)/2)

We apply Euler's relation

e^(itheta)=costheta+isintheta

e^(7/6pii)=cos(7/6pi)+isin(7/6pi)

e^(17/8pii)=cos(17/8pi)+isin(17/8pi)

So,

cos(7/6pi)=cos(pi+1/6pi)=-cos(1/6pi)=-sqrt3/2

sin(7/6pi)=sin(pi+1/6pi)=-sin(1/6pi)=-1/2

cos(17/8pi)=cos(2pi+1/8pi)=cos(1/8pi)=sqrt((1+cos(pi/4))/2)=sqrt((1+sqrt2/2)/2)=sqrt(2+sqrt2)/2

sin(17/8pi)=sin(2pi+1/8pi)=sin(1/8pi)=sqrt((1-cos(pi/4))/2)=sqrt((1-sqrt2/2)/2)=sqrt(2-sqrt2)/2

Therefore,

e^(7/6pii)-e^(17/8pii)=-sqrt3/2-1/2i-(sqrt(2+sqrt2)/2+sqrt(2-sqrt2)/2i)

=-sqrt3/2-sqrt(2+sqrt2)/2-i(1/2+sqrt(2-sqrt2)/2)