How do you evaluate e7π6ie4π3i using trigonometric functions?

1 Answer
Feb 13, 2016

2[sin(5π4)sin(π12)+icos(5π4)sin(π12)]

Explanation:

e7πi6=cos(7π6)isin(7π6)

e4πi3=cos(4π3)isin(4π3)

The required simplification would be

cos(7π6)cos(4π3)+i[sin(4π3)sin(7π6)]

= 2sin(7π6+4π32)sin(4π37π62)+i[2cos(4π3+7π62)sin(4π37π62)]

= 2[sin(5π4)sin(π12)+icos(5π4)sin(π12)]