How do you evaluate e7π6ieπ3i using trigonometric functions?

1 Answer
Dec 18, 2017

e7π6ieπ3i=i(1+32)1+32

Explanation:

Using Euler's formula (exi=cosxisinx) we get:
e7π6ieπ3i=(cos(7π6)isin(7π6))(cos(π3)isin(π3))

cos(7π6)=32
sin(7π6)=12
cos(π3)=12
sin(π3)=32

e7π6ieπ3i=(32+i2)(1232i)

=32+i212+32i

=1+32+i(1+32)

=i(1+32)1+32