How do you evaluate eπ12ie3π8i using trigonometric functions?

1 Answer
Jul 20, 2017

See the explanation below

Explanation:

We apply Euler's relation

eiθ=cosθ+isinθ

e112πi=cos(112π)+isin(112π)

e38πi=cos(38π)+isin(38π)

cos(112π)=cos(13π14π)

=cos(13π)cos(14π)+sin(13π)sin(14π)

=1222+3222

=2+64

sin(112π)=sin(13π14π)

=sin(13π)cos(14π)sin(14π)cos(13π)

=32222212

=624

cos(34π)=12sin2(38π)

2sin2(38π)=1cos(34π)=1+22

sin(38π)= 12(1+22)=122+2

cos(34π)=2cos2(38π)1

2cos2(38π)=1+cos(34π)=122

cos(38π)=1222

Therefore,

e112πie38πi=cos(112π)+isin(112π)cos(38π)isin(38π)

=(2+64)1222+i((624)122+2)