How do you evaluate e^( ( pi)/12 i) - e^( ( 9 pi)/8 i)eπ12ie9π8i using trigonometric functions?

1 Answer
Jul 16, 2017

The answer is =(sqrt2+sqrt6)/4+sqrt(2+sqrt2)/2+i((sqrt6-sqrt2)/4+sqrt(2-sqrt2)/2)=2+64+2+22+i(624+222)

Explanation:

We apply Euler's relation

e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ

e^(1/12pii)=cos(1/12pi)+isin(1/12pi)e112πi=cos(112π)+isin(112π)

e^(9/8pii)=cos(9/8pi)+isin(9/8pi)e98πi=cos(98π)+isin(98π)

cos(1/12pi)=cos(1/3pi-1/4pi)cos(112π)=cos(13π14π)

=cos(1/3pi)cos(1/4pi)+sin(1/3pi)sin(1/4pi)=cos(13π)cos(14π)+sin(13π)sin(14π)

=1/2*sqrt2/2+sqrt3/2*sqrt2/2=1222+3222

=(sqrt2+sqrt6)/4=2+64

sin(1/12pi)=sin(1/3pi-1/4pi)sin(112π)=sin(13π14π)

=sin(1/3pi)cos(1/4pi)-sin(1/4pi)cos(1/3pi)=sin(13π)cos(14π)sin(14π)cos(13π)

=sqrt3/2*sqrt2/2-sqrt2/2*1/2=32222212

=(sqrt6-sqrt2)/4=624

cos(9/8pi)=cos(pi+1/8pi)cos(98π)=cos(π+18π)

=cos(pi)cos(1/8pi)-sin(pi)cos(1/8pi)=cos(π)cos(18π)sin(π)cos(18π)

=-1*cos(1/8pi)-0*cos(1/8pi)=1cos(18π)0cos(18π)

=-cos(1/8pi)=cos(18π)

Cos(2x)=2cos^2x-1cos(2x)=2cos2x1

cos^2x=(1+cos(2x))/2cos2x=1+cos(2x)2

cos^2(pi/8)=1/2(1+cos(pi/4))=1/2(1+sqrt2/2)=(2+sqrt2)/4cos2(π8)=12(1+cos(π4))=12(1+22)=2+24

cos(pi/8)=sqrt(2+sqrt2)/2cos(π8)=2+22

cos(9/8pi)=-sqrt(2+sqrt2)/2cos(98π)=2+22

sin(9/8pi)=sin(pi+1/8pi)=sin(pi)cos(1/8pi)+sin(1/8)picos(pi)sin(98π)=sin(π+18π)=sin(π)cos(18π)+sin(18)πcos(π)

=0-sin(1/8pi)=0sin(18π)

cos^2(1/8pi)+sin^2(1/8pi)=1cos2(18π)+sin2(18π)=1

sin^2(1/8pi)=1-(sqrt(2+sqrt2)/2)^2=(4-2-sqrt2)/4sin2(18π)=1(2+22)2=4224

sin(1/8pi)=sqrt(2-sqrt2)/2sin(18π)=222

sin(9/8pi)=-sqrt(2-sqrt2)/2sin(98π)=222

Therefore,

e^(1/12pii)-e^(9/8pii)=cos(1/12pi)+isin(1/12pi)-cos(9/8pi)+isin(9/8pi)e112πie98πi=cos(112π)+isin(112π)cos(98π)+isin(98π)

=(sqrt2+sqrt6)/4+sqrt(2+sqrt2)/2+i((sqrt6-sqrt2)/4+sqrt(2-sqrt2)/2)=2+64+2+22+i(624+222)