How do you evaluate e^( ( pi)/2 i) - e^( ( 19 pi)/12 i)eπ2ie19π12i using trigonometric functions?

1 Answer
Apr 27, 2016

I get this.


Interestingly enough, you can use Euler's formula, which states:

\mathbf(e^(ix) = isinx+cosx)eix=isinx+cosx

Thus, you can substitute x = pi/2x=π2 or (19pi)/1219π12 to give:

e^(i*pi"/"2) - e^(i*19pi"/"12)eiπ/2ei19π/12

= [isin(pi/2) + cos(pi/2)] - [isin((19pi)/12) + cos((19pi)/12)]=[isin(π2)+cos(π2)][isin(19π12)+cos(19π12)]

We know that (19pi)/12 = [(19*180)/12]^@ = 285^@19π12=[1918012]=285, so...

= color(green)([isin(90^@) + cos(90^@)] - [isin(285^@) + cos(285^@)])=[isin(90)+cos(90)][isin(285)+cos(285)]

Okay, so what is sinsin or cos(285^@)cos(285)? We could use some trig relationships to get:

sin(285^@) = sin(-75^@) = -sin(75^@) = -sin(30^@+45^@)sin(285)=sin(75)=sin(75)=sin(30+45)

Using the addition identity sin(u + v) = sinucosv + cosusinvsin(u+v)=sinucosv+cosusinv,

=> -[sin30^@cos45^@ + cos30^@sin45^@][sin30cos45+cos30sin45]

= -(1/2*sqrt2/2 + sqrt3/2*sqrt2/2)=(1222+3222)

= (-sqrt2-sqrt6)/4 ~~ -0.9659=2640.9659

Then, consider cos(285^@)cos(285) to be:

cos(285^@) = cos(-285^@) = cos(75^@) = cos(30^@+45^@)cos(285)=cos(285)=cos(75)=cos(30+45)

Using the addition identity cos(u + v) = cosucosv - sinusinvcos(u+v)=cosucosvsinusinv,

=> cos30^@cos45^@ - sin30^@sin45^@cos30cos45sin30sin45

= sqrt3/2*sqrt2/2 - 1/2*sqrt2/2=32221222

= (sqrt6 - sqrt2)/4 ~~ 0.2588=6240.2588

So overall, we have:

color(blue)(e^(i*pi"/"2) - e^(i*19pi"/"12))eiπ/2ei19π/12

= [icancel(sin(90^@)) + cancel(cos(90^@))^0] - [isin(285^@) + cos(285^@)]

= i - i[(-sqrt2-sqrt6)/4] - [(sqrt6 - sqrt2)/4]

= -(sqrt6 - sqrt2)/4 + (1 - (-sqrt2-sqrt6)/4)i

= color(blue)(-(sqrt6 - sqrt2)/4 + (1 + (sqrt2+sqrt6)/4)i)

~~ color(blue)(-0.2588 + 1.9659i)