How do you evaluate e^( ( pi)/2 i) - e^( ( 5 pi)/3 i)eπ2ie5π3i using trigonometric functions?

1 Answer
Oct 27, 2016

=-1/2+i(1+sqrt3/2)=12+i(1+32)

Explanation:

The expression is evaluated by applying Euler's formula:
color(red)(e^(ix)=cosx+isinx)eix=cosx+isinx

We will use the following trigonometric identities:
color(blue)(cos(2pi+alpha)=cosalphacos(2π+α)=cosα
color(blue)(cos(-alpha)=cosalpha)cos(α)=cosα
color(blue)(sin(-alpha)=-sinalpha)sin(α)=sinα
Let us compute e^(pi/2i)and e^((5pi)/3i)eπ2iande5π3i by applying the above formula

e^(pi/2i)=cos(pi/2)+isin(pi/2)eπ2i=cos(π2)+isin(π2)
rArre^(pi/2i)=0+i(1)eπ2i=0+i(1)
rArre^(pi/2i)=ieπ2i=i

e^((5pi)/3i)=cos((5pi)/3)+isin((5pi)/3)e5π3i=cos(5π3)+isin(5π3)
rArre^((5pi)/3i)=cos((6pi)/3-pi/3)+isin((6pi)/3-pi/3)e5π3i=cos(6π3π3)+isin(6π3π3)
rArre^((5pi)/3i)=cos(2pi-pi/3)+isin(2pi-pi/3)e5π3i=cos(2ππ3)+isin(2ππ3)
rArre^((5pi)/3i)=color(blue)(cos(-pi/3)+isin(-pi/3))e5π3i=cos(π3)+isin(π3)
rArre^((5pi)/3i)=color(blue)(cos(pi/3)-isin(pi/3)e5π3i=cos(π3)isin(π3)
rArre^((5pi)/3i)=1/2-isqrt3/2e5π3i=12i32

e^(pi/2i)-e^((5pi)/3i)eπ2ie5π3i

=i-(1/2-isqrt3/2)=i(12i32)
=i-1/2+isqrt3/2=i12+i32
=-1/2+i(1+sqrt3/2)=12+i(1+32)

Therefore,

e^(pi/2i)-e^((5pi)/3i)=-1/2+i(1+sqrt3/2)eπ2ie5π3i=12+i(1+32)