How do you evaluate eπ4ie2π3i using trigonometric functions?

1 Answer
Jul 2, 2016

Recall Euler's formula:

eiθ=cosθ+isinθ

Using this:

eiπ4e2iπ3=cos(π4)+isin(π4)cos(2π3)isin(2π3)

Evaluating these trig functions we get:

22+i22+12i32

And grouping terms together gives us

2+12+i(232)