How do you evaluate eπ4ie3π8i using trigonometric functions?

1 Answer
Mar 23, 2016

eπ4ie3π8i0.324i0.217

Explanation:

eiθ=cosθ+isinθ

θ1=π4,θ2=3π8

eπ4i=cos(π4)+isin(π4)

e3π8i=cos(3π8)+isin(3π8)

eπ4ie3π8i=[cos(π4)+isin(π4)][cos(3π8)+isin(3π8)]

eπ4ie3π8i=[cos(π4)cos(3π8)]i[sin(π4)+sin(3π8)]

0.324i0.217