How do you evaluate eπ4ie4π3i using trigonometric functions?

1 Answer
Nov 14, 2016

sin(π)4+icos(π)4
- sin(4π)3+icos(4π)3

Explanation:

In complex terms, R(sinθ+icosθ)= Reiθ
where R is the modulus and θ is the argument.

So
eπ4ie4π3i = 1(sin(π)4+icos(π)4)
- 1(sin(4π)3+icos(4π)3)

= sin(π)4+icos(π)4
- sin(4π)3+icos(4π)3