How do you evaluate eπ4ie5π3i using trigonometric functions?

1 Answer
Oct 16, 2017

eπ4ie5π3i=212+i32+236

Explanation:

Using Euler's identity:
eix=cosx+isinx

So, eπ4ie5π3i=(cos(π4)+isin(π4))(cos(5π3)+isin(5π3)
=(22+i22)(12i33)
=22+i2212+i33
=22+i2212+i33
=212+i32+236