How do you evaluate eπ4ie7π4i using trigonometric functions?

1 Answer
Mar 27, 2016

eπ4ie7π4i=2i

Explanation:

As eiθ=cosθ+isinθ, we have

eπ4i=cos(π4)+isin(π4) and

e7π4i=cos(7π4)+isin(7π4)

Hence, eπ4ie7π4i

= (cos(π4)+isin(π4))(cos(7π4)+isin(7π4))

As cos(π4)=cos(7π4)=12,

sin(π4)=12 and sin(7π4)=12

eπ4ie7π4i

= (12+i12)(12+i(12))

= (1212+i(12)+i(12))

=0+i22 = 2i