How do you evaluate eπ4ie7π6i using trigonometric functions?

1 Answer
Feb 19, 2016

Pl use Euler's formula to evalute

Explanation:

Euler's formula is eix=cosx+isinx
So eπ4i-e7π6i
=cos(π4)+isin(π4)(cos(7π6)+isin(7π6))
=cos(π4)cos(7π6))+i(sin(π4sin(7π6))
=cos(π4)cos(π+π6))+i(sin(π4sin(π+π6))
=cos(π4)+cos(π6))+i(sin(π4+sin(π6))
=12+32+i(12+12)

please check it and give feed back