How do you evaluate eπ4ie7π6i using trigonometric functions?

1 Answer
Jan 9, 2018

eπi4 = cos(π4)+isin(π4)=22+i22

e7πi6= cos(7π6)+isin(7π6)=cos(π6)isin(π6)
=32i12
(In the third quadrant both sin and cos are negative)

Thus, eπi4 -e7πi6= 2+32+i2+12