How do you evaluate eπ4ieπ6i using trigonometric functions?

1 Answer
May 18, 2016

eπ4ieπ6i=(26)22+i(22)22

Explanation:

eπ4i=cos(π4)+isin(π4) and eπ6i=cos(π6)+isin(π6)

Hence, eπ4ieπ6i=cos(π4)+isin(π4)cos(π6)isin(π6)

= cos(π4)cos(π6)+i(sin(π4)sin(π6))

= 1232+i(1212)

= (26)22+i(22)22