First, rewrite this expression as:
(8/27)^(-2/3) => (8/27)^(1/3 xx -2)
We can rewrite this using this rule for exponents:
x^(color(red)(a) xx color(blue)(b)) = (x^color(red)(a))^color(blue)(b)
(8/27)^(color(red)(1/3) xx color(blue)(-2)) => ((8/27)^(color(red)(1/3)))^ color(blue)(-2)
We can now write this in radical form using this rule:
x^(1/color(red)(n)) = root(color(red)(n))(x)
((8/27)^(1/color(red)(3)))^-2 = (root(color(red)(3))(8/27))^-2
We can now use this rule for dividing radicals to evaluate the radical:
root(n)(color(red)(a)/color(blue)(b)) = root(n)(color(red)(a))/root(n)(color(blue)(b))
(root(3)(color(red)(8)/color(blue)(27)))^-2 => (root(3)(color(red)(8))/root(3)(color(blue)(27)))^-2 => (root(3)(color(red)(2 * 2 * 2))/root(3)(color(blue)(3 * 3 * 3)))^-2 => (2/3)^-2
Yet again, we can rewrite this as:
(2/3)^-2 => (2 xx 1/3)^-2 => 2^-2 xx 1/3^-2
Now, using these rules of exponents, yes, we can rewrite this again and then evaluate:
x^color(red)(a) = 1/x^color(red)(-a) and 1/x^color(blue)(a) = x^color(blue)(-a)
2^color(red)(-2) xx 1/3^color(blue)(-2) => 1/2^color(red)(- -2) xx 3^color(blue)(- -2) => 1/2^color(red)(2) xx 3^color(blue)(2) => 1/4 xx 9 =>
9/4