How do you evaluate ( \frac { 8} { 27} ) ^ { - \frac { 2} { 3} } without using a calculator?

2 Answers
Jun 19, 2017

(8/27)^(-2/3)=9/4

Explanation:

As x^(-1)=1/x, x^(1/n)=root(n)x and x^(mn)=(x^m)^n

(8/27)^(-2/3)

= ((8/27)^(-1))^(2/3)

= (1/(8/27))^(2/3)

= ((27/8)^(1/3))^2

= (root(3)27/root(3)8)^2

= (root(3)(3xx3xx3)/root(3)(2xx2xx2))^2

= (3/2)^2

= 9/4

Jun 19, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

(8/27)^(-2/3) => (8/27)^(1/3 xx -2)

We can rewrite this using this rule for exponents:

x^(color(red)(a) xx color(blue)(b)) = (x^color(red)(a))^color(blue)(b)

(8/27)^(color(red)(1/3) xx color(blue)(-2)) => ((8/27)^(color(red)(1/3)))^ color(blue)(-2)

We can now write this in radical form using this rule:

x^(1/color(red)(n)) = root(color(red)(n))(x)

((8/27)^(1/color(red)(3)))^-2 = (root(color(red)(3))(8/27))^-2

We can now use this rule for dividing radicals to evaluate the radical:

root(n)(color(red)(a)/color(blue)(b)) = root(n)(color(red)(a))/root(n)(color(blue)(b))

(root(3)(color(red)(8)/color(blue)(27)))^-2 => (root(3)(color(red)(8))/root(3)(color(blue)(27)))^-2 => (root(3)(color(red)(2 * 2 * 2))/root(3)(color(blue)(3 * 3 * 3)))^-2 => (2/3)^-2

Yet again, we can rewrite this as:

(2/3)^-2 => (2 xx 1/3)^-2 => 2^-2 xx 1/3^-2

Now, using these rules of exponents, yes, we can rewrite this again and then evaluate:

x^color(red)(a) = 1/x^color(red)(-a) and 1/x^color(blue)(a) = x^color(blue)(-a)

2^color(red)(-2) xx 1/3^color(blue)(-2) => 1/2^color(red)(- -2) xx 3^color(blue)(- -2) => 1/2^color(red)(2) xx 3^color(blue)(2) => 1/4 xx 9 =>

9/4