How do you express 1/[(1+x)(1-2x)]1(1+x)(12x) in partial fractions?

1 Answer
Mar 9, 2016

1/((1+x)(1-2x))hArr1/(3(1+x))+2/(3(1-2x))1(1+x)(12x)13(1+x)+23(12x)

Explanation:

Let 1/((1+x)(1-2x))hArrA/(1+x)+B/(1-2x)1(1+x)(12x)A1+x+B12x

Simplifying RHS, it is equal to

1/((1+x)(1-2x))hArr(A(1-2x)+B(1+x))/((1+x)(1-2x))1(1+x)(12x)A(12x)+B(1+x)(1+x)(12x) or

1/((1+x)(1-2x))hArr((B-2A)x+(A+B))/((1+x)(1-2x))1(1+x)(12x)(B2A)x+(A+B)(1+x)(12x)

i.e. B-2A=0B2A=0 and A+B=1A+B=1

From first we get B=2AB=2A and putting this in second we get

A+2A=1A+2A=1 or 3A=13A=1 or A=1/3A=13. As B=2A=2xx1/3=2/3B=2A=2×13=23, we have

1/((1+x)(1-2x))hArr1/(3(1+x))+2/(3(1-2x))1(1+x)(12x)13(1+x)+23(12x)