How do you express 1/(4x^2 - 9)14x29 in partial fractions?

1 Answer
Sep 24, 2016

1/(4x^2-9)=(1/6)/(2x-3)+(-1/6)/(2x+3).14x29=162x3+162x+3.

Explanation:

Let us write f(x)=1/(4x^2-9)=1/{(2x-3)(2x+3)}f(x)=14x29=1(2x3)(2x+3).

So, to convert f(x)f(x) into Partial Fractions, we need constants

A & B in RR, such that,

f(x)=1/{(2x-3)(2x+3)}=A/(2x-3)+B/(2x+3).

Now A & B can easily be derived by Heavyside's Cover-up

Method :

A=[1/(2x+3)]_(2x-3=0)=1/(3+3)=1/6.

B=[1/(2x-3)]_(x=-3/2)=1/(-3-3)=-1/6.

Thus,

1/(4x^2-9)=(1/6)/(2x-3)+(-1/6)/(2x+3).