How do you express 1/(x^2+x+1) 1x2+x+1 in partial fractions?

1 Answer
Mar 24, 2016

1/(x^2+x+1)=(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))1x2+x+1=3i3(x+12+32i)3i3(x+1232i)

Explanation:

This expression can only be split down further if we use Complex coefficients...

x^2+x+1x2+x+1

= (x+1/2)^2+3/4=(x+12)2+34

= (x+1/2)^2-(sqrt(3)/2i)^2=(x+12)2(32i)2

= (x+1/2-sqrt(3)/2i)(x+1/2+sqrt(3)/2i)=(x+1232i)(x+12+32i)

So:

1/(x^2+x+1) = A/(x+1/2-sqrt(3)/2i)+B/(x+1/2+sqrt(3)/2i)1x2+x+1=Ax+1232i+Bx+12+32i

=(A(x+1/2+sqrt(3)/2i)+B(x+1/2-sqrt(3)/2i))/(x^2+x+1)=A(x+12+32i)+B(x+1232i)x2+x+1

=((A+B)x+(A(1/2+sqrt(3)/2i)+B(1/2-sqrt(3)/2i)))/(x^2+x+1)=(A+B)x+(A(12+32i)+B(1232i))x2+x+1

Equating coefficients, we find:

{ (A+B=0), (A(1/2+sqrt(3)/2i)+B(1/2-sqrt(3)/2i)=1) :}

From the first equation we find B=-A.

Substitute this in the second equation to get:

Asqrt(3)i = 1

Hence:

{ (A = 1/(sqrt(3)i) = -sqrt(3)/3i), (B=sqrt(3)/3i) :}

So:

1/(x^2+x+1) = B/(x+1/2+sqrt(3)/2i)+A/(x+1/2-sqrt(3)/2i)

=(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))