How do you express 1/(x^3-6x^2+9x)1x36x2+9x in partial fractions?

1 Answer
Jan 7, 2017

The answer is =(1/9)/x+(1/3)/(x-3)^2+(-1/9)/(x-3)=19x+13(x3)2+19x3

Explanation:

Let's factorise the denominator

x^3-6x^2+9x=x(x^2-6x+9)= x(x-3)^2x36x2+9x=x(x26x+9)=x(x3)2

Therefore,

1/(x^3-6x^2+9x)=1/(x(x-3)^2)1x36x2+9x=1x(x3)2

=A/x+B/(x-3)^2+C/(x-3)=Ax+B(x3)2+Cx3

=(A(x-3)^2+Bx+Cx(x-3))/(x(x-3)^2)=A(x3)2+Bx+Cx(x3)x(x3)2

So,

1=A(x-3)^2+Bx+Cx(x-3)1=A(x3)2+Bx+Cx(x3)

Let x=0x=0, =>, 1=9A1=9A

Coefficients of x^2x2,

0=A+C0=A+C, =>, C=-A=-1/9C=A=19

Let x=3x=3, =>, 1=3B1=3B

Therefore,

1/(x^3-6x^2+9x)=(1/9)/x+(1/3)/(x-3)^2+(-1/9)/(x-3)1x36x2+9x=19x+13(x3)2+19x3