How do you express 1(x+5)2(x1) in partial fractions?

1 Answer
Sep 30, 2016

1(x+5)2(x1)=16(x+5)2136(x+5)+136(x1)

Explanation:

1(x+5)2(x1)=A(x+5)2+Bx+5+Cx1

Multiplying both sides of this equation by (x+5)2 we get:

1x1=A+B(x+5)+C(x+5)2x1

Now let x=5 to find:

A=1(5)1=16

Multiplying both sides of the first equation by (x1) we get:

1(x+5)2=A(x1)(x+5)2+B(x1)x+5+C

Now let x=1 to find:

C=1((1)+5)2=136

Going back to the first equation and making a common denominator we find:

1(x+5)2(x1)=A(x+5)2+Bx+5+Cx1

1(x+5)2(x1)=A(x1)+B(x1)(x+5)+C(x+5)2(x+5)2(x1)

So equating the coefficients of x2 in the numerator, we find:

B=C=136