How do you express 1 / (x^6 - x^3)1x6x3 in partial fractions?

1 Answer
Aug 30, 2016

1/(x^6-x^3) = 1/(3(x-1))-(x+2)/(3(x^2+x+1))-1/x^31x6x3=13(x1)x+23(x2+x+1)1x3

Explanation:

First note that:

1/(t^2-t) = 1/(t(t-1)) = (t - (t-1))/(t(t-1)) = 1/(t-1)-1/t1t2t=1t(t1)=t(t1)t(t1)=1t11t

So putting t = x^3t=x3 we find:

1/(x^6-x^3) = 1/(x^3-1)-1/x^31x6x3=1x311x3

We cannot simplify 1/x^31x3, but we can work on the other term...

1/(x^3-1)1x31

= 1/((x-1)(x^2+x+1))=1(x1)(x2+x+1)

= 1/3*3/((x-1)(x^2+x+1))=133(x1)(x2+x+1)

= 1/3*((x^2+x+1) - (x^2+x-2))/((x-1)(x^2+x+1))=13(x2+x+1)(x2+x2)(x1)(x2+x+1)

= 1/3*((x^2+x+1) - (x-1)(x+2))/((x-1)(x^2+x+1))=13(x2+x+1)(x1)(x+2)(x1)(x2+x+1)

= 1/3*(1/(x-1)-(x+2)/(x^2+x+1))=13(1x1x+2x2+x+1)

= 1/(3(x-1))-(x+2)/(3(x^2+x+1))=13(x1)x+23(x2+x+1)

So:

1/(x^6-x^3) = 1/(3(x-1))-(x+2)/(3(x^2+x+1))-1/x^31x6x3=13(x1)x+23(x2+x+1)1x3