How do you express (2(1-x-x^2))/(1-x^2) in partial fractions?

1 Answer
May 8, 2016

(2(1-x-x^2))/(1-x^2)=2-1/(1-x)+1/(1+x)

Explanation:

(2(1-x-x^2))/(1-x^2)

= (2(1-x^2))/(1-x^2)+(2(-x))/(1-x^2

= 2+(-2x)/(1-x^2)

As (1-x^2)=(1-x)(1+x), let

(-2x)/(1-x^2)hArrA/(1-x)+B/(1+x)

or (-2x)/(1-x^2)hArr(A(1+x)+B(1-x))/(1-x^2)

or (-2x)/(1-x^2)hArr((A+B)+x(A-B))/(1-x^2)

Hence A+B=0 and A-B=-2. Adding them we get

2A=-2 or A=-1 and B=1

Hence, (2(1-x-x^2))/(1-x^2)=2-1/(1-x)+1/(1+x)