How do you express (2x-2)/((x-5)(x-3))2x2(x5)(x3) in partial fractions?

1 Answer
Feb 24, 2016

(2x-2)/((x-5)(x-3))" "=" " 4/(x-5)- 2/(x-3)2x2(x5)(x3) = 4x52x3

Explanation:

Write as:" " (2x-2)/((x-5)(x-3))" "=" " A/(x-5)+B/(x-3) 2x2(x5)(x3) = Ax5+Bx3

Thus: " " (2x-2)/((x-5)(x-3)) =(A(x-3)+B(x-5))/((x-5)(x-3)) 2x2(x5)(x3)=A(x3)+B(x5)(x5)(x3)

So:" "2x-2" "=" "A(x-3)+B(x-5) 2x2 = A(x3)+B(x5)

2x-2" "=" "Ax-3A+Bx-5B2x2 = Ax3A+Bx5B

Collecting like terms

2x-2" "=" "(A+B)x -3A-5B2x2 = (A+B)x3A5B

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Comparing LHS to RHS

2x=(A+B)x" so "A+B =2" "2x=(A+B)x so A+B=2 ............................(1)

-2=-3A-5B" so "B=(2-3A)/5" "2=3A5B so B=23A5 ...................(2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (2) into (1) giving:

A+(2-3A)/5=2A+23A5=2

(5A+2-3A)/5=25A+23A5=2

2A=(2xx5)-2 =82A=(2×5)2=8

A=4" "A=4 .......................................(3)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (3) into (1) giving:

4+B=2 4+B=2

B=-2B=2
'~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)((2x-2)/((x-5)(x-3))" "=" " 4/(x-5)- 2/(x-3))2x2(x5)(x3) = 4x52x3

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check: 4(x-3)-2(x-5) = 4x-12-2x+10 = 2x-24(x3)2(x5)=4x122x+10=2x2

Matching original numerator so ok!