Write as:" " (2x-2)/((x-5)(x-3))" "=" " A/(x-5)+B/(x-3) 2x−2(x−5)(x−3) = Ax−5+Bx−3
Thus: " " (2x-2)/((x-5)(x-3)) =(A(x-3)+B(x-5))/((x-5)(x-3)) 2x−2(x−5)(x−3)=A(x−3)+B(x−5)(x−5)(x−3)
So:" "2x-2" "=" "A(x-3)+B(x-5) 2x−2 = A(x−3)+B(x−5)
2x-2" "=" "Ax-3A+Bx-5B2x−2 = Ax−3A+Bx−5B
Collecting like terms
2x-2" "=" "(A+B)x -3A-5B2x−2 = (A+B)x−3A−5B
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Comparing LHS to RHS
2x=(A+B)x" so "A+B =2" "2x=(A+B)x so A+B=2 ............................(1)
-2=-3A-5B" so "B=(2-3A)/5" "−2=−3A−5B so B=2−3A5 ...................(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (2) into (1) giving:
A+(2-3A)/5=2A+2−3A5=2
(5A+2-3A)/5=25A+2−3A5=2
2A=(2xx5)-2 =82A=(2×5)−2=8
A=4" "A=4 .......................................(3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (3) into (1) giving:
4+B=2 4+B=2
B=-2B=−2
'~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)((2x-2)/((x-5)(x-3))" "=" " 4/(x-5)- 2/(x-3))2x−2(x−5)(x−3) = 4x−5−2x−3
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check: 4(x-3)-2(x-5) = 4x-12-2x+10 = 2x-24(x−3)−2(x−5)=4x−12−2x+10=2x−2
Matching original numerator so ok!