How do you express 2x+3x49x2 in partial fractions?

1 Answer
May 13, 2016

2x+3x49x2=29x+13x2118(x+3)16(x3)

Explanation:

Looking to the denominator x49x2=x2(x+3)(x3) then the fraction admits an expansion such that
2x+3x49x2=Ax+Bx2+Cx+3+Dx3 so
doing f=2x+3x49x2AxBx2Cx+3Dx3=0 and calculanting f(x49x2)=(D+CA)x3+(3D+B3C)x2+(9A+2)x+39B=0 for all values of x, we get:
A=29,B=13,C=118,D=16