Looking to the denominator x4−9x2=x2(x+3)(x−3) then the fraction admits an expansion such that 2x+3x4−9x2=Ax+Bx2+Cx+3+Dx−3 so
doing f=2x+3x4−9x2−Ax−Bx2−Cx+3−Dx−3=0 and calculanting f(x4−9x2)=(D+C−A)x3+(3D+B−3C)x2+(9A+2)x+3−9B=0 for all values of x, we get: A=−29,B=13,C=−118,D=−16