How do you express (2x) / (4x^2 + 12x + 9)2x4x2+12x+9 in partial fractions?

1 Answer

(2x)/(4x^2+12x+9)=(-3)/(2x+3)^2+1/(2x+3)2x4x2+12x+9=3(2x+3)2+12x+3

Explanation:

Start with the given denominator (4x^2+12x+9)(4x2+12x+9)
this is equal to (2x+3)^2(2x+3)2

so that the fraction is

(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=A/(2x+3)^2+B/(2x+3)2x4x2+12x+9=2x(2x+3)2=A(2x+3)2+B2x+3

the LCD=(2x+3)^2=(2x+3)2

the equation becomes

(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=A/(2x+3)^2+(B(2x+3))/(2x+3)^22x4x2+12x+9=2x(2x+3)2=A(2x+3)2+B(2x+3)(2x+3)2

and also

(2x)/(2x+3)^2=(A+B(2x+3))/(2x+3)^22x(2x+3)2=A+B(2x+3)(2x+3)2

(2x)/(2x+3)^2=(A+2Bx+3B)/(2x+3)^22x(2x+3)2=A+2Bx+3B(2x+3)2

rearranging

(2x+0*x^0)/(2x+3)^2=(2Bx+(A+3B)*x^0)/(2x+3)^22x+0x0(2x+3)2=2Bx+(A+3B)x0(2x+3)2

the equations for the variables A, B are

2B=22B=2
A+3B=0A+3B=0

Using Algebra to find
B=1B=1 and A=-3A=3

final answer is

(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=A/(2x+3)^2+B/(2x+3)2x4x2+12x+9=2x(2x+3)2=A(2x+3)2+B2x+3

(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=(-3)/(2x+3)^2+1/(2x+3)2x4x2+12x+9=2x(2x+3)2=3(2x+3)2+12x+3