How do you express (4x^2+6x-2)/((x-1)(x+1)^2) in partial fractions?

1 Answer
Jul 6, 2018

(4x^2+6x-2)/((x-1)(x+1)^2)=2/(x+1)+2/(x+1)^2+2/(x-1)

Explanation:

We consider the following ansatz

(4x^2+6x-2)/((x-1)*(x+1)^2)=A/(x-1)+B/(x+1)+C/(x+1)^2
multiplying by

(x-1)(x+1)^2

we get

4x^2+6x-2=A(x+1)^2+B(x+1)(x-1)+C(x-1)

ultiplying out and rearranging

we get

4x^2+6x-2=x^2(A+B)+x(2A+C)+C(x-1)
this leads us to the following System

A+B=4

2A+C=6

A-B-C=-2

solving this System we get A=B=C=2