How do you express 4x27x12(x)(x+2)(x3) in partial fractions?

2 Answers
Dec 16, 2016

The answer is =2x+95x+2+15x3

Explanation:

Let's do the decomposition into partial fractions

4x27x12x(x+2)(x3)=Ax+Bx+2+Cx3

=A(x+2)(x3)+B(x)(x3)+C(x)(x+2)x(x+2)(x3)

Therefore,

4x27x12=A(x+2)(x3)+B(x)(x3)+C(x)(x+2)

Let x=0, , 12=6A, , A=2

Let x=2,, 18=10B, , B=95

Let x=3, , 3=15C, , C=15

So,

4x27x12x(x+2)(x3)=2x+95x+2+15x3

Dec 16, 2016

4x27x12x(x+2)(x3)=2x+95(x+2)+15(x3)

Explanation:

Let 4x27x12x(x+2)(x3)Ax+Bx+2+Cx3

Hence 4x27x12x(x+2)(x3)A(x+2)(x3)+Bx(x3)+Cx(x+2)x(x+2)(x3)

i.e. 4x27x12A(x+2)(x3)+Bx(x3)+Cx(x+2)

Now putting x=0, we get 6A=12 or A=2

putting x=3, we get 15C=3 or C=15

and putting x=2, we get 10B=16+1412=18 or B=95

Hence 4x27x12x(x+2)(x3)=2x+95(x+2)+15(x3)