How do you express 4x322x2+33x6(x3)3(x+2) in partial fractions?

1 Answer

The decomposition is =35(x3)3+4225(x3)2+308125x3+192125x+2

Explanation:

The decomposition is 4x322x2+33x6(x3)3(x+2)=A(x3)3+B(x3)2+Cx3+Dx+2
=A(x+2)+B(x3)(x+2)+C(x3)2(x+2)+D(x3)3

4x322x2+33x6=A(x+2)+B(x3)(x+2)+C(x3)2(x+2)+D(x3)3
let x=35A=3A=35
let x=2125D=192D=192125
coefficients of x3C+D=4C=4192125=308125
and putting x=0, we get 6=2A6B+18C27D

or 6B=6+65+183082527192125

= 365+9(61612557625)

= 365+360125

= 18025+7225=25225

B=4225