How do you express 6x2+1x2(x1)2 in partial fractions?

1 Answer
Nov 25, 2017

6x2+1x2(x1)2=2x+1x22x1+7(x1)2

Explanation:

6x2+1x2(x1)2=Ax+Bx2+Cx1+D(x1)2

So:

6x2+1=Ax(x1)2+B(x1)2+Cx2(x1)+Dx2

Putting x=1 we get:

7=D

Putting x=0 we get:

1=B

So:

6x2+1=Ax(x1)2+(x1)2+Cx2(x1)+7x2

6x2+1=Ax(x22x+1)+(x22x+1)+Cx2(x1)+7x2

6x2+1=A(x32x2+x)+(x22x+1)+C(x3x2)+7x2

6x2+1=(A+C)x3+(82AC)x2+(A2)x+1

Hence:

A=2 and C=2

So:

6x2+1x2(x1)2=2x+1x22x1+7(x1)2