How do you express 6x2+1x2(x−1)2 in partial fractions?
1 Answer
Nov 25, 2017
Explanation:
6x2+1x2(x−1)2=Ax+Bx2+Cx−1+D(x−1)2
So:
6x2+1=Ax(x−1)2+B(x−1)2+Cx2(x−1)+Dx2
Putting
7=D
Putting
1=B
So:
6x2+1=Ax(x−1)2+(x−1)2+Cx2(x−1)+7x2
6x2+1=Ax(x2−2x+1)+(x2−2x+1)+Cx2(x−1)+7x2
6x2+1=A(x3−2x2+x)+(x2−2x+1)+C(x3−x2)+7x2
6x2+1=(A+C)x3+(8−2A−C)x2+(A−2)x+1
Hence:
A=2 andC=−2
So:
6x2+1x2(x−1)2=2x+1x2−2x−1+7(x−1)2