How do you express 7x215x8(x+3)(x2+4) in partial fractions?

1 Answer
Oct 7, 2016

7x215x8(x+3)(x2+4)=2x+3+5xx2+4

Explanation:

1. First, we factorise the denominator, but since this is done, we skip to the next step: Writing a partial fraction for each factor:

7x215x8(x+3)(x2+4)=ax+3+bx+cx2+4

2. Multiply out the factors to remove the fractions:

7x215x8=a(x2+4)+(bx+c)(x+3)

3. Solve the equation for the constants:

7x215x8=(7x8)(x+1)
(7x8)(x+1)=a(x2+4)+(bx+c)(x+3)

a) If we set x=3, then we can solve for a because bx+c=0

(7(3)8)(3+1)=a((3)2+4)

26=13a

a=2

(7x8)(x+1)=2(x2+4)+(bx+c)(x+3)

b) If we set x=0, we can solve for c because bx=0

(8)(+1)=2(+4)+c(3)

8=8+3c

3c=0,c=0

(7x8)(x+1)=2(x2+4)+(bx)(x+3)

c) If we set x=1, we can now solve for b relatively simply

(78)(1+1)=2(1+4)+b(1+3)

30=10+4b

20=4b

b=5

4.Now we substitute the values back into the partial fractions:

7x215x8(x+3)(x2+4)=2x+3+5xx2+4