How do you express (x+1)/[(x^2+1)^2(x^2)] in partial fractions?

1 Answer
Jan 20, 2017

The answer is =1/x^2+1/x+(-x-1)/(x^2+1)^2+(-x-1)/(x^2+1)

Explanation:

Let's perform the decomposition into partial fractions

(x+1)/((x^2+1)^2x^2)=A/x^2+B/x+(Cx+D)/(x^2+1)^2+(Ex+F)/(x^2+1)

=(A(x^2+1)^2+B(x)(x^2+1)^2+(Cx+D)x^2+(Ex+F)(x^2+1)x^2)/((x^2+1)^2x^2)

Equalising the numerators

x+1=A(x^2+1)^2+B(x)(x^2+1)^2+(Cx+D)x^2+(Ex+F)(x^2+1)x^2

Let x=0, =>, 1=A

Coefficients of x, 1=B

Coefficients of x^2, 0=2A+D+F

Coefficients of x^3, 0=2B+C+E

coefficients of x^4, 0=A+F, =>, F=-A=-1

D=-2A-F=-2+1=-1

Coefficients of x^5, 0=B+E, =>, E=-B=-1

C=-2B-E=-2+1=-1

Therefore,

(x+1)/((x^2+1)^2x^2)=1/x^2+1/x+(-x-1)/(x^2+1)^2+(-x-1)/(x^2+1)