How do you express (x^2-2x+1)/(x-2)^3x22x+1(x2)3 in partial fractions?

1 Answer
Aug 7, 2018

The answer is =1/(x-2)^3+2/(x-2)^2+1/(x-2)=1(x2)3+2(x2)2+1x2

Explanation:

Perform the decomposition into partial fractions as follows

(x^2-2x+1)/(x-2)^3=A/(x-2)^3+B/(x-2)^2+C/(x-2)x22x+1(x2)3=A(x2)3+B(x2)2+Cx2

=(A+B(x-2)+C(x-2)^2)/((x-2)^3)=A+B(x2)+C(x2)2(x2)3

The denominators are the same, compare the numerators

x^2-2x+1=A+B(x-2)+C(x-2)^2x22x+1=A+B(x2)+C(x2)2

Let x=2x=2, =>, 4-4+1=A44+1=A, =>, A=1A=1

Coefficients of x^2x2

1=C1=C

Coefficients of xx

-2=B-4C2=B4C

B=4C-2=2B=4C2=2

Finally,

(x^2-2x+1)/(x-2)^3=1/(x-2)^3+2/(x-2)^2+1/(x-2)x22x+1(x2)3=1(x2)3+2(x2)2+1x2