We start the decomposition into partial fractions
(x^2-3x+2)/(4x^3+11x^2)=(x^2-3x+2)/(x^2(4x+11))x2−3x+24x3+11x2=x2−3x+2x2(4x+11)
=A/x^2+B/x+C/(4x+11)=Ax2+Bx+C4x+11
=(A(4x+11)+Bx(4x+11)+Cx^2)/(x^2(4x+11))=A(4x+11)+Bx(4x+11)+Cx2x2(4x+11)
Therefore,
x^2-3x+2=A(4x+11)+Bx(4x+11)+Cx^2x2−3x+2=A(4x+11)+Bx(4x+11)+Cx2
Let, x=0x=0, =>⇒, 2=11A2=11A, =>⇒, A=2/11A=211
Coefficients of -3=4A+11B−3=4A+11B
11B=-3-4A=-3-8/1111B=−3−4A=−3−811
B=-41/121B=−41121
Coefficients of x^2x2, 1=4B+C1=4B+C
C=1-4BC=1−4B
C=1+164/121C=1+164121
C=285/121C=285121
So,
(x^2-3x+2)/(4x^3+11x^2)=(2/11)/x^2+(-41/121)/x+(285/121)/(4x+11)x2−3x+24x3+11x2=211x2+−41121x+2851214x+11