How do you express (x^2+x)/((x+2)(x-1)^2)x2+x(x+2)(x1)2 in partial fractions?

1 Answer
Jan 17, 2017

The answer is =(2/9)/(x+2)+(7/9)/(x-1)+(2/3)/(x-1)^2=29x+2+79x1+23(x1)2

Explanation:

Let's do the decomposition into partial fractions

(x^2+x)/((x+2)(x-1)^2)=A/(x+2)+B/(x-1)+C/(x-1)^2x2+x(x+2)(x1)2=Ax+2+Bx1+C(x1)2

=(A(x-1)^2+B(x+2)(x-1)+C(x+2))/((x+2)(x-1)^2)=A(x1)2+B(x+2)(x1)+C(x+2)(x+2)(x1)2

We equalise the denominators

x^2+x=A(x-1)^2+B(x+2)(x-1)+C(x+2)x2+x=A(x1)2+B(x+2)(x1)+C(x+2)

Let x=-2x=2, =>,2=9A2=9A, =>, A=2/9A=29

Let x=1x=1, =>, 2=3C2=3C, =>, C=2/3C=23

Coefficients of x^2x2

1=A+B1=A+B, =>, B=1-A=1-2/9=7/9B=1A=129=79

So,

(x^2+x)/((x+2)(x-1)^2)=(2/9)/(x+2)+(7/9)/(x-1)+(2/3)/(x-1)^2x2+x(x+2)(x1)2=29x+2+79x1+23(x1)2