A/(2x+ 7) + B/(x + 1) = (x+ 2)/((2x + 7)(x + 1))A2x+7+Bx+1=x+2(2x+7)(x+1)
Put on a common denominator.
(A(x + 1))/((2x+ 7)(x + 1)) + (B(2x + 7))/((2x + 7)(x + 1)) = (x+2)/((2x+ 7)(x + 1))A(x+1)(2x+7)(x+1)+B(2x+7)(2x+7)(x+1)=x+2(2x+7)(x+1)
Ax + A + 2Bx + 7B = x+ 2Ax+A+2Bx+7B=x+2
(A + 2B)x + (A + 7B) = x + 2(A+2B)x+(A+7B)=x+2
So, A + 2B = 1A+2B=1 and A + 7B = 2A+7B=2.
Solve.
A = 1 - 2B -> 1 - 2B + 7B = 2A=1−2B→1−2B+7B=2
5B = 15B=1
B = 1/5B=15
:.A = 1 - 2(1/5) = 3/5
Hence, the partial fraction decomposition is 3/(5(2x + 7)) + 1/(5(x+ 1)) = (x + 2)/((2x + 7)(x + 1)).
Hopefully this helps!