How do you express x3+2x416 in partial fractions?

1 Answer
Nov 20, 2016

The answer is =316x+2+516x2+x214x2+4

Explanation:

Let's factorise the denominator

x416=(x24)(x2+4)=(x+2)(x2)(x2+4)

Therefore,

x3+2x416=x3+2(x+2)(x2)(x2+4)

The decomposition in partial fractions is

x3+2x416=Ax+2+Bx2+Cx+Dx2+4

A(x2)(x2+4)+B(x+2)(x2+4)+(Cx+D)(x2)(x+2)(x2)(x+2)(x2+4)

Therefore,

(x3+2)=(A(x2)(x2+4)+B(x+2)(x2+4)+(Cx+D)(x2)(x+2))

let x=2
10=32B ; B=516

Let x=2
6=32A ; A=316

Coefficients of x3
1=A+B+C , C=1516316=816=12

Let x=0
2=8A+8B4D : 4D=232+52=1
D=14

x3+2x416=316x+2+516x2+x214x2+4