How do you express x3−5x+2x2−8x+15 in partial fractions?
1 Answer
Aug 7, 2016
Explanation:
x3−5x+2x2−8x+15
=x3−8x2+15x+8x2−64x+120+44x−118x2−8x+15
=x(x2−8x+15)+8(x2−8x+15)+44x−118x2−8x+15
=x+8+44x−118x2−8x+15
=x+8+44x−118(x−3)(x−5)
=x+8+Ax−3+Bx−5
Using Heaviside's cover-up method, we find:
A=44(3)−118(3)−5=132−118−2=14−2=−7
B=44(5)−118(5)−3=220−1182=1022=51
So:
x3−5x+2x2−8x+15=x+8−7x−3+51x−5