How do you express x/(x^3-x^2-6x)xx3−x2−6x in partial fractions?
1 Answer
Feb 5, 2016
1/(5(x-3)) - 1/(5(x+2)) 15(x−3)−15(x+2)
Explanation:
begin by factorising the denominator
x^3-x^2 -6x = x(x^2 -x-6) = x(x-3)(x+2) x3−x2−6x=x(x2−x−6)=x(x−3)(x+2)
rArr cancel(x)/(cancel(x)(x-3)(x+2)) =1/((x-3)(x+2))
rArr 1/((x-3)(x+2)) = A/(x-3) + B/(x+2) multiply through the equation by (x-3)(x+2)
hence 1 = A(x+2) + B(x-3) ............(*)
[note that x=-2 and x=3 will make the terms with A and B equal to zero.]
let x = -2 in (*): 1 = -5B
rArr B = -1/5 let x = 3 in(*) : 1 = 5A
rArr A = 1/5
rArr x/(x^3-x^2-6x) = 1/(5(x-3)) - 1/(5(x+2))