How do you find int (11-2x)/(x^2 + x - 2) dx using partial fractions?

2 Answers
Oct 22, 2016

int((11-2x)dx)/((x-1)(x+2))=3ln(x-1)-5ln(x+2)+C

Explanation:

First factorise the denominator
x^2+x-2=(x-1)(x+2)

Then we look for the partial fraction

(11-2x)/((x-1)(x+2))=A/(x-1)+B/(x+2)

=(A(x+2) +B(x-1))/((x-1)(x+2))

So 11-2x=A(x+2) +B(x-1)

If x=1 => 11-2=3A+0
so A=9/3=3

If x=-2 => 11+4=0-3B
so B=15/-3=-5

(11-2x)/((x-1)(x+2))=3/(x-1)-5/(x+2)

Then we can integrate

int((11-2x)dx)/((x-1)(x+2))=int(3dx)/(x-1)-int(5dx)/(x+2)

=3ln(x-1)-5ln(x+2)+C

See the answer:
enter image source here