How do you find int (2-x)/((1-x)(1+x^2)) dx2x(1x)(1+x2)dx using partial fractions?

1 Answer
Jul 16, 2016

-1/2 ln |1-x|+1/4 ln(1+x^2) +3/2 tan^{-1} x+c12ln|1x|+14ln(1+x2)+32tan1x+c

Explanation:

To break the fraction
{2-x}/{(1-x)(1+x^2)}2x(1x)(1+x2)
into partial fractions, we assume

{2-x}/{(1-x)(1+x^2)} = A/{1-x} + {Bx +C}/{1+x^2}2x(1x)(1+x2)=A1x+Bx+C1+x2

Multiplying both sides by (1-x)(1+x^2)(1x)(1+x2) yields the equation

2-x = A(1+x^2) +Bx(1-x)+C(1-x)2x=A(1+x2)+Bx(1x)+C(1x)
= (A+C) +(B-C) x +(A-B)x^2=(A+C)+(BC)x+(AB)x2

Comparing the coefficients of powers of xx on both sides gives

A+C = 2A+C=2, B-C=-1, BC=1, and A-B=0AB=0.

It is easy to see that the solution of this set of equations is A=B=1/2, C=3/2A=B=12,C=32, so that

{2-x}/{(1-x)(1+x^2)} = 1/{2(1-x)} + {1/2x +3/2}/{1+x^2}2x(1x)(1+x2)=12(1x)+12x+321+x2

So the required integral is

int {2-x}/{(1-x)(1+x^2)} dx 2x(1x)(1+x2)dx
= int {dx}/{2(1-x)} + 3/2 int {dx}/{1+x^2} + 1/4 int {2xdx}/{1+x^2} =dx2(1x)+32dx1+x2+142xdx1+x2
= -1/2 ln |1-x|+1/4 ln(1+x^2) +3/2 tan^{-1} x+c=12ln|1x|+14ln(1+x2)+32tan1x+c