How do you find int (x-1)/((x+2)(x^2+3))dx using partial fractions?

1 Answer
Apr 2, 2018

The answer is =-3/7ln(|x+2|)+3/14ln(x^2+3)+1/(7sqrt3)arctan(x/sqrt3)+C

Explanation:

Perform the decomposition into partial fractions

(x-1)/((x+2)(x^2+3))=A/(x+2)+(Bx+C)/(x^2+3)

=(A(x^2+3)+(Bx+C)(x+2))/((x+2)(x^2+3))

The denominators are the same, compare the numerators

x-1=A(x^2+3)+(Bx+C)(x+2)

Let x=-2, =>, -3=7A, =>, A=-3/7

Let x=0, =>, -1=3A+2C

2C=-1-3A=-1+9/7=2/7

C=1/7

Coefficients of x^2

0=A+B

B=-A=3/7

Therefore,

(x-1)/((x+2)(x^2+3))=(-3/7)/(x+2)+((3/7)x+(1/7))/(x^2+3)

So,

int((x-1)dx)/((x+2)(x^2+3))=int(-3/7dx)/(x+2)+int(((3/7)x+(1/7))dx)/(x^2+3)

=-3/7ln(|x+2|)+3/14int(2xdx)/(x^2+3)+1/7int(1dx)/(x^2+3)

=-3/7ln(|x+2|)+3/14ln(x^2+3)+1/21int(dx)/((x/sqrt3)^2+1)

=-3/7ln(|x+2|)+3/14ln(x^2+3)+1/21*sqrt3arctan(x/sqrt3)+C

=-3/7ln(|x+2|)+3/14ln(x^2+3)+1/(7sqrt3)arctan(x/sqrt3)+C