How do you find int (x^2+1)/(x+1)^3dxx2+1(x+1)3dx using partial fractions?

2 Answers
May 31, 2018

x-2/(x+1)-2ln|x+1|+Cx2x+12ln|x+1|+C

Explanation:

Note that

(x^2+1)/(x+1)^2=1-1/(x+1)+2/(x+1)^2x2+1(x+1)2=11x+1+2(x+1)2

May 31, 2018

ln(x+1)+2/(x+1)-1/(x+1)^2+Cln(x+1)+2x+11(x+1)2+C

Explanation:

Due to x^2+1=x^2+2x+1-2x-2+2x2+1=x2+2x+12x2+2 or (x+1)^2-2*(x+1)+2(x+1)22(x+1)+2

int (x^2+1)/(x+1)^3*dxx2+1(x+1)3dx

=int dx/(x+1)-2int dx/(x+1)^2+2int dx/(x+1)^2dxx+12dx(x+1)2+2dx(x+1)2

=ln(x+1)+2/(x+1)-1/(x+1)^2+Cln(x+1)+2x+11(x+1)2+C