How do you find int(x^2+1) / ( x^2 + 6x -3) dxx2+1x2+6x3dx using partial fractions?

1 Answer
Jun 11, 2016

int (x^2+1)/(x^2+6x-3) dxx2+1x2+6x3dx

= x + ((18+11sqrt(3))/6)ln abs(x+3-2sqrt(3)) - ((54+11sqrt(3))/6)ln abs(x+3+2sqrt(3)) + C=x+(18+1136)lnx+323(54+1136)lnx+3+23+C

Explanation:

x^2+6x-3 = (x+3)^2-12x2+6x3=(x+3)212

= (x+3)^2-(2sqrt(3))^2=(x+3)2(23)2

= (x+3-2sqrt(3))(x+3+2sqrt(3))=(x+323)(x+3+23)

(x^2+1)/(x^2+6x-3) = (x^2+6x-3-6x+4)/(x^2+6x-3)x2+1x2+6x3=x2+6x36x+4x2+6x3

=1 + (-6x+4)/(x^2+6x-3)=1+6x+4x2+6x3

=1 + A/(x+3-2sqrt(3)) + B/(x+3+2sqrt(3))=1+Ax+323+Bx+3+23

=1 + (A(x+3+2sqrt(3)) + B(x+3-2sqrt(3)))/(x^2+6x-3)=1+A(x+3+23)+B(x+323)x2+6x3

=1 + ((A+B)x + ((3+2sqrt(3))A + (3-2sqrt(3))B))/(x^2+6x-3)=1+(A+B)x+((3+23)A+(323)B)x2+6x3

Equating coefficients, we have:

{ (A+B = -6), ((3+2sqrt(3))A + (3-2sqrt(3))B = 4) :}

From the first equation:

B = -A-6

Substituting in the second equation:

(3+2sqrt(3))A+(3-2sqrt(3))(-A-6) = 4

Which simplifies to:

4sqrt(3)A-18+12sqrt(3) = 4

Adding 18-12sqrt(3) to both sides we get:

4sqrt(3)A = 22+12sqrt(3)

Multiplying both sides by sqrt(3)/12 we find:

A = (11sqrt(3))/6+3 = (18+11sqrt(3))/6

Then:

B = -A-6 = -(11sqrt(3))/6-9 = -(54+11sqrt(3))/6

So:

int (x^2+1)/(x^2+6x-3) dx

= int 1 + ((18+11sqrt(3))/6)(1/(x+3-2sqrt(3))) - ((54+11sqrt(3))/6)(1/(x+3+2sqrt(3))) dx

= x + ((18+11sqrt(3))/6)ln abs(x+3-2sqrt(3)) - ((54+11sqrt(3))/6)ln abs(x+3+2sqrt(3)) + C