I decomposed integrand into basic fractions,
x3−x−1x⋅(x4−1)
=x3−x−1x(x+1)(x−1)(x2+1)
=Ax+Bx+1+Cx−1+Dx+Ex2+1
After expanding denominators,
A(x+1)(x−1)(x2+1)+Bx(x−1)(x2+1)+Cx(x+1)(x2+1)+(Dx+E)x(x2−1)=x3−x−1
Set x=−1, 4B=−1orB=−14
Set x=0, −A=−1orA=1
Set x=1, 4C=−1orC=−14
Set x=i, (E+Di)⋅(−2i)=−1−2iorE+Di=1−12⋅i. So D=−12andE=1
Hence,
x3−x−1x⋅(x4−1)
=1x−14⋅1x+1−14⋅(x−1)−12⋅x−2x2+1
Hence,
∫x3−x−1x⋅(x4−1)⋅dx
=∫dxx-14dxx+1-14dxx−1-12*∫(x−2)⋅dxx2+1
=lnx−14⋅ln(x+1)−14⋅ln(x−1)-14*∫2x⋅dxx2+1+dxx2+1
=lnx−14⋅ln(x+1)−14⋅ln(x−1)−14⋅ln(x2+1)+arctanx+C
=lnx−14⋅ln(x4−1)+arctanx+C