How do you find x3x1(x41)xdx using partial fractions?

1 Answer
Oct 26, 2017

lnx14ln(x41)+arctanx+C

Explanation:

I decomposed integrand into basic fractions,

x3x1x(x41)

=x3x1x(x+1)(x1)(x2+1)

=Ax+Bx+1+Cx1+Dx+Ex2+1

After expanding denominators,

A(x+1)(x1)(x2+1)+Bx(x1)(x2+1)+Cx(x+1)(x2+1)+(Dx+E)x(x21)=x3x1

Set x=1, 4B=1orB=14

Set x=0, A=1orA=1

Set x=1, 4C=1orC=14

Set x=i, (E+Di)(2i)=12iorE+Di=112i. So D=12andE=1

Hence,

x3x1x(x41)

=1x141x+114(x1)12x2x2+1

Hence,

x3x1x(x41)dx

=dxx-14dxx+1-14dxx1-12*(x2)dxx2+1

=lnx14ln(x+1)14ln(x1)-14*2xdxx2+1+dxx2+1

=lnx14ln(x+1)14ln(x1)14ln(x2+1)+arctanx+C

=lnx14ln(x41)+arctanx+C