How do you find int (x - 4 ) /((x-1)(x+2)(x-3)) dxx4(x1)(x+2)(x3)dx using partial fractions?

1 Answer
Apr 10, 2016

int (x-4)/((x-1)(x+2)(x-3)) dxx4(x1)(x+2)(x3)dx

= int 1/(2(x-1))-2/(5(x+2))-1/(10(x-3)) dx=12(x1)25(x+2)110(x3)dx

= 1/2 ln abs(x-1) - 2/5 ln abs(x+2) - 1/10 ln abs(x-3) + C=12ln|x1|25ln|x+2|110ln|x3|+C

Explanation:

Since the denominator is already factored into distinct linear factors, we are looking for a partial fraction decompositionof the form:

(x-4)/((x-1)(x+2)(x-3)) = A/(x-1)+B/(x+2)+C/(x-3)x4(x1)(x+2)(x3)=Ax1+Bx+2+Cx3

=(A(x+2)(x-3)+B(x-1)(x-3)+C(x-1)(x+2))/((x-1)(x+2)(x-3))=A(x+2)(x3)+B(x1)(x3)+C(x1)(x+2)(x1)(x+2)(x3)

=(A(x^2-x-6)+B(x^2-4x+3)+C(x^2+x-2))/((x-1)(x+2)(x-3))=A(x2x6)+B(x24x+3)+C(x2+x2)(x1)(x+2)(x3)

=((A+B+C)x^2+(-A-4B+C)x+(-6A+3B-2C))/((x-1)(x+2)(x-3))=(A+B+C)x2+(A4B+C)x+(6A+3B2C)(x1)(x+2)(x3)

Equating coefficients, we get the system of simulataneous linear equations:

{ (A+B+C = 0), (-A-4B+C=1), (-6A+3B-2C=-4) :}

Add multiples of the first equation to the second and third equations to get:

{ (A+B+C = 0), (-3B+2C=1), (9B+4C=-4) :}

Add three times the second equation to the third equation to get:

{ (A+B+C = 0), (-3B+2C=1), (10C=-1) :}

Divide the third equation by 10 to get:

{ (A+B+C = 0), (-3B+2C=1), (C=-1/10) :}

Subtract multiples of the third equation from the other equations to get:

{ (A+B = 1/10), (-3B=6/5), (C=-1/10) :}

Divide the second equation by -3 to get:

{ (A+B = 1/10), (B=-2/5), (C=-1/10) :}

Subtract the second equation from the first to get:

{ (A = 1/2), (B=-2/5), (C=-1/10) :}

So:

(x-4)/((x-1)(x+2)(x-3)) = 1/(2(x-1))-2/(5(x+2))-1/(10(x-3))

So:

int (x-4)/((x-1)(x+2)(x-3)) dx

= int 1/(2(x-1))-2/(5(x+2))-1/(10(x-3)) dx

= 1/2 ln abs(x-1) - 2/5 ln abs(x+2) - 1/10 ln abs(x-3) + C